https://wodolei.ru/catalog/kuhonnie_moyki/uglovie/ 
А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 

"Сколько у Вас информации ?", "Швейцария - великая страна, у них
столько информации !", "Я слышал, индекс стоимости информации пошел
вверх !" Абсурдны они потому, что информация, хотя и играет все более
значимую роль в нашей жизни, не является чем-то осязаемым и не поддается
точному измерению, как материалы - "лица" прежних эпох.
Информационная революция только начинается. Средства связи неизбежно
подешевеют - так же резко, как в свое время вычислительная техника. Ког-
да их стоимость достаточно снизится и "срезонирует" с другими достижени-
ями технологии, ретивые администраторы и нервные политики перестанут
упоминать выражение "информационная магистраль" просто потому, что оно
модно и престижно. Магистраль станет реальностью и, как электричество,
вызовет далеко идущие последствия. Чтобы понять, почему информация ста-
новится и центр всего и вся, важно понять, как технология изменяет спо-
собы ее обработки.
Об этом главным образом и пойдет речь в данной главе. Слабо подготов-
ленные читатели, не знающие принципов работы вычислительной техники и
истории ее развития, получат необходимый минимум сведений, чтобы продол-
жить чтение книги. А если Вы знаете, как работают цифровые компьютеры,
можете спокойно пролистать несколько страниц и перейти сразу к третьей
главе.
Самая фундаментальная отличительная черта информации в будущем - поч-
ти вся она станет цифровой. Уже сейчас во многих библиотеках печатные
материалы сканируют и хранят как электронные данные на обычных или на
компакт-дисках. Газеты и журналы теперь зачастую готовят в электронной
форме, а печатают на бумаге только для распространения. Электронную ин-
формацию можно хранить вечно - или столько, сколько нужно - в компьютер-
ных базах данных. Гигантские объемы репортерской информации легко дос-
тупны через оперативные службы. Фотографии, фильмы и видеозаписи тоже
преобразуются в цифровую информацию. С каждым годом совершенствуются ме-
тоды сбора информации и превращения ее в квадрильоны крошечных пакетов
данных. Как только цифровая информация помещается в то или иное "храни-
лище", любой, у кого есть персональный компьютер и средства доступа к
базам данных, может мгновенно обратиться к ней и использовать ее по сво-
ему усмотрению. Характерная особенность нашего периода истории как раз в
том и заключается, что информацию мы изменяем и обрабатываем совершенно
новыми способами и гораздо быстрее. Появление компьютеров, "быстро и де-
шево" обрабатывающих и передающих цифровые данные, обязательно приведет
к трансформации обычных средств связи в домах и офисах.
Идея применять для манипуляций с числами какой-нибудь инструмент не
нова. До 1642 года, когда девятнадцатилетний французский ученый Блез
Паскаль изобрел механическое счетное устройство - суммирующую машину, в
Азии уже почти 5000 лет пользовались счетами. Три десятилетия спустя не-
мецкий математик Готфрид Лейбниц усовершенствовал конструкцию машины
Паскаля. Его "шаговый вычислитель" позволял умножать, делить и вычислять
квадратные корни. Весьма надежные механические арифмометры, напичканные
шестеренками и наборными счетчиками, наследники шагового вычислителя,
служили главной опорой бизнесу вплоть до их замены электронными аналога-
ми. Например, кассовые аппараты в годы моего детства, по сути, были
арифмометрами с отделениями для наличности.
Более полутора столетий назад видного британского математика озарила
гениальная идея, которая прославила его имя уже при жизни. Чарлз Беббидж
(Charles Babbage), профессор математики Кембриджского университета, по-
нял, что можно построить механическое устройство, способное выполнять
последовательность взаимосвязанных вычислений, - своего рода компьютер !
Где-то в начале тридцатых годов прошлого столетия он пришел к выводу,
что машина сможет манипулировать информацией, если только ту удастся
преобразовать в числа. Беббидж видел машину, приводимую в действие па-
ром, состоящую из штифтов, зубчатых колес, цилиндров и других механичес-
ких частей - в общем, настоящее детище начинавшегося тогда индустри-
ального века. По мысли Беббиджа, "аналитическая машина" должна была из-
бавить человечество от монотонных вычислений и ошибок, с ними связанных.
Для описания устройства машины ему, конечно, не хватало терминов -
тех, которыми мы пользуемся сегодня. Центральный процессор, или "рабочие
внутренности" этой машины, он называл "мельницей", а память - "хранили-
щем". Беббиджу казалось, что информацию будут обрабатывать так же, как
хлопок: подавать со склада (хранилища) и превращать во что-то новое.
Аналитическая машина задумывалась как механическая, но ученый предви-
дел, что она сможет следовать варьируемым наборам инструкций и тем самым
служить разным целям. В том же и смысл программного обеспечения. Совре-
менная программа - это внушительный набор правил, посредством которых
машину "инструктируют", как решать ту или иную задачу. Беббидж понимал,
что для ввода таких инструкций нужен совершенно новый тип языка, и он
изобрел его, использовав цифры, буквы, стрелки и другие символы. Этот
язык позволил бы "программировать" аналитическую машину длинными сериями
условных инструкций, что, в свою очередь, позволило бы машине реагиро-
вать на изменение ситуации. Он - первый, кто увидел, что одна машина
способна выполнять разные функции.
Следующее столетие ученые математики работали над идеями, высказанны-
ми Беббиджем, и к середине сороковых годов нашего века электронный
компьютер наконец был построен - на основе принципов аналитической маши-
ны. Создателей современного компьютера выделить трудно, поскольку все
исследования проводились во время второй мировой войны под покровом пол-
ной секретности, главным образом - в Соединенных Штатах и Великобрита-
нии. Основной вклад внесли три человека: Алан Тьюринг (Alan Turing),
Клод Шеннон (Claude Shannon) и Джон фон Нейман (John von Neumann).
В середине тридцатых годов Алан Тьюринг - блестящий британский мате-
матик, как и Беббидж, получивший образование в Кембридже, предложил свой
вариант универсальной вычислительной машины, которая могла бы в зависи-
мости от конкретных инструкций работать практически с любым видом инфор-
мации. Сегодня она известна как машина Тьюринга.
А в конце тридцатых Клод Шеннон, тогда еще студент, доказал, что ма-
шина, исполняющая логические инструкции, может манипулировать информаци-
ей. В своей магистерской диссертации он рассмотрел, как с помощью элект-
рических цепей компьютера выполнять логические операции, где единица -
"истина" (цепь замкнута), а нуль - "ложь" (цепь разомкнута).
Здесь речь идет о двоичной системе счисления, иначе говоря, о коде.
Двоичная система - это азбука электронных компьютеров, основа языка, на
который переводится и с помощью которого хранится и используется вся ин-
формация в компьютере. Эта система очень проста и в то же время нас-
только важна для понимания того, как работают компьютеры, что, пожалуй,
стоит на этом задержаться.
Представьте, что в Вашей комнате должна гореть лампа мощностью в 250
ватт. Однако Вы хотите регулировать освещение от 0 ватт (полная темнота)
до максимума. Один из способов добиться этого - воспользоваться выключа-
телем с регулятором. Чтобы погасить лампу, Вы поворачиваете ручку против
часовой стрелки в положение "выкл" (0 ватт), а чтобы включить ее "на всю
катушку", - по часовой стрелке до упора (250 ватт). Ну а чтобы добиться
полумрака или просто уменьшить яркость, Вы устанавливаете регулятор в
какое-то промежуточное положение.
Такая система проста, но имеет свои ограничения. Если регулятор нахо-
дится в промежуточном положении - скажем, Вы приглушили свет для ужина в
интимной обстановке, - останется лишь гадать, каков сейчас уровень осве-
щения. Вам не известно ни то, какую мощность "берет" лампа в данный мо-
мент, ни то, как точно описать настройку регулятора. Ваша информация
приблизительна, что затрудняет ее сохранение и воспроизведение.
Вдруг на следующей неделе Вам захочется создать то же освещение ? Ко-
нечно, можно поставить отметку на шкале регулятора, но навряд ли это по-
лучится точно. А что делать, если понадобится воспроизвести другую наст-
ройку ? Или кто-то придет к Вам в гости и захочет отрегулировать свет ?
Допустим, Вы скажете: "Поверни ручку примерно на пятую часть по часовой
стрелке" или "Поверни ручку, пока стрелка не окажется примерно на двух
часах". Однако то, что сделает Ваш гость, будет лишь приблизительно со-
ответствовать Вашей настройке. А может случиться и так, что Ваш друг пе-
редаст эту информацию своему знакомому, а тот - еще кому-нибудь. При
каждой передаче информации шансы на то, что она останется точной, убыва-
ют.
Это был пример информации, хранимой в "аналоговом" виде. Положение
ручки регулятора соответствует уровню освещения. Если ручка повернута
наполовину, можно предположить, что и лампа будет гореть вполнакала. Из-
меряя или описывая то, насколько повернута ручка, Вы на самом деле сох-
раняете информацию не об уровне освещения, а о его аналоге - положении
ручки. Аналоговую информацию можно накапливать, хранить и воспроизво-
дить, но она неточна и, что хуже, при каждой передаче становится все ме-
нее точной.
Теперь рассмотрим не аналоговый, а цифровой метод хранения и передачи
информации. Любой вид информации можно преобразовать в числа, пользуясь
только нулями и единицами. Такие числа (состоящие из нулей и единиц) на-
зываются двоичными. Каждый нуль или единица - это бит. Преобразованную
таким образом информацию можно передать компьютерам и хранить в них как
длинные строки бит. Эти-то числа и подразумеваются под "цифровой инфор-
мацией".
Пусть вместо одной 250-ваттной лампы у Вас будет 8 ламп, каждая из
которых в 2 раза мощнее предыдущей - от 1 до 128 ватт. Кроме того, каж-
дая лампа соединена со своим выключателем, причем самая слабая располо-
жена справа.
Включая и выключая эти выключатели, Вы регулируете уровень освещен-
ности с шагом в 1 ватт от нуля (все выключатели выключены) до 255 ватт
(все включены), что дает 256 возможных вариантов. Если Вам нужен 1 ватт,
Вы включаете только самый правый выключатель, и загорается 1-ваттная
лампа. Для 2 ватт Вы зажигаете 2-ваттную лампу. Если Вам нужно 3 ватта,
Вы включаете 1- и 2-ваттную лампы, поскольку 1 плюс 2 дает желаемые 3
ватта. Хотите 4 ватта, включите 4-ваттную лампу, 5 ватт - 4- и 1-ваттную
лампы, 250 ватт - все, кроме 4- и 1-ваттной ламп.
Если Вы считаете, что для ужина идеально подойдет освещение в 137
ватт, включите 128-, 8- и 1-ваттную лампы.
Такая система обеспечивает точную запись уровней освещенности для ис-
пользования в будущем или передачи другим, у кого в комнате аналогичный
порядок подключения ламп. Поскольку способ записи двоичной информации
универсален (младшие разряды справа, старшие - слева, каждая последующая
позиция удваивает значение разряда), нет нужды указывать мощность конк-
ретных ламп. Вы просто определяете состояние выключателей:
"вкл-выкл-выкл-выкл-вкл-выкл-выкл-вкл". Имея такую информацию, Ваш зна-
комый точно отрегулирует освещение в комнате на 137 ватт. В сущности,
если каждый будет внимателен, это сообщение без искажений пройдет через
миллионы рук и на конце цепочки кто-то получит первоначальный результат
- 137 ватт.
Чтобы еще больше сократить обозначения, можно заменить "выкл" нулем
(0), а "вкл" - единицей (1).
Тем самым вместо "вкл-выкл-выкл-выкл-вкл-выкл-выкл-вкл" (подразуме-
вая, что надо включить первую, пятую и восьмую лампы, а остальные выклю-
чить), Вы запишете то же самое иначе: 1, 0, 0, 0, 1, 0, 0, 1 или двоич-
ным числом 10001001. Оно равно десятичному 137. Теперь Вы скажете своему
знакомому: "Я подобрал изумительное освещение ! 10001001. Попробуй". И
он точно воспроизведет Вашу настройку, зажигая и гася соответствующие
лампы.
Может показаться, что этот способ чересчур сложен для описания яркос-
ти ламп, но он иллюстрирует теорию двоичного представления информации,
лежащую в основе любого современного компьютера.
Двоичное представление чисел позволяет составление чисел позволяет
создавать калькуляторы, пользуясь преимуществами электрических цепей.
Именно так и поступила во время второй мировой войны группа математиков
из Moore School of Electrical Engineering при Пенсильванском университе-
те, возглавляемая Дж. Преспером Эккертом (J. Presper Eckert) и Джоном
Моучли (John Mauchly), начав разработку электронно-вычислительной машины
ENIAC (Electronic Numerical Integrator And Calculator - электронный чис-
ловой интегратор и калькулятор). Перед учеными поставили цель - ускорить
расчеты таблиц для наведения артиллерии. ENIAC больше походил на элект-
ронный калькулятор, чем на компьютер, но двоичные числа представляли уже
не примитивными колесиками, как в арифмометрах, а электронными лампами -
"переключателями".
Солдаты, приписанные к этой огромной машине, постоянно носились вок-
руг нее, скрипя тележками, доверху набитыми электронными лампами. Стоило
перегореть хотя бы одной лампе, как ENIAC тут же вставал и начиналась
суматоха: все спешно искали сгоревшую лампу. Одной из причин - возможно,
и не слишком достоверной - столь частой замены ламп считалась такая: их
тепло и свечение привлекают мотыльков, которые залетают внутрь машины и
вызывают короткое замыкание. Если это правда, то термин "жучки" (bugs),
под которым имеются в виду ошибки в программных и аппаратных средствах
компьютеров, приобретает новый смысл.
Когда все лампы работали, инженерный персонал мог настроить ENIAC на
какую-нибудь задачу, вручную изменив подключения 6000 проводов. Все эти
провода приходилось вновь переключать, когда вставала другая задача.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49


А-П

П-Я