https://wodolei.ru/catalog/mebel/na-zakaz/ 
А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 

Конечно, эти станции и эти работы были не столь еще совершенны, как современная радиолокация, но факт остается фактом, и он говорит сам за себя.
…Таким образом специалисты третьего рейха могут в лучшем случае занять почетное третье место в своих попытках создать установки, использующие электромагнитные волны для обнаружения и уничтожения воздушных целей. На первом месте, безусловно, стоят наши специалисты, на втором союзники в лице англичан и американцев. Причем последние, вполне вероятно, использовали и помощь своих заокеанских коллег.
Топливо из… «ничего»
Всем известно, что в период Второй мировой войны немецкие химики и промышленники наладили производство всевозможных эрзац-продуктов. В частности, именно им мы обязаны появлению и распространению маргарина. Однако почему-то мало кто обращает внимание на то, какие усилия были предприняты деятелями третьего рейха для того, чтобы научиться синтезировать жидкое топливо буквально из ничего.
В годы Великой отечественной войны довольно часто можно было видеть такую картину. Автомобиль останавливался возле поленницы, и шофер начинал заправлять машину березовыми или осиновыми чурками. Конечно, топки в обычном понимании этого слова в автомашине не было. Просто рядом с кабиной устанавливалась высокая колонка химического реактора, и древесину перегоняли в газообразное или жидкое топливо.
Специалистам противоборствующих стран было отлично известно, что древесный, он же метиловый спирт или метанол, был впервые обнаружен в продуктах сухой перегонки древесины еще в 1661 году. Французский химик М. Бертло в 1857 году получил первый синтетический метанол омылением метилхлорида. В то время этим дело, собственно, и ограничилось. На практике метанол по-прежнему получали из подсмольных вод сухой перегонки древесины. Первый такой завод был построен в США в 1867 году, а к 1910 году таких заводов было уже около 120.
Конечно, новым способом тут же заинтересовались в Германии, у которой никогда не было своих запасов нефти, а из полезных ископаемых в изобилии, пожалуй, лишь бурый уголь. Да и лесов не так уж много. Поэтому немецкие химики старались найти методы синтеза метанола из более доступного сырья, чем древесина. Так, в 1923 году в Германии был получен первый метанол на базе водяного газа (он же синтез-газ СО+Н2) с помощью заводской установки, дававшей до 20 тонн метанола в сутки. И уже год спустя немецкие промышленники начали экспорт синтетического метанола в США, где он продавался в три раза дешевле, чем полученный из древесины. В это время в Германии метанол даже называли иногда «органической водой» (organische Wasser).
В годы Второй мировой войны метанол уже использовался в качестве моторного топлива для автомобилей (правда, в смеси с бензином). При почти вдвое меньшей, чем у бензина, теплоте сгорания, у метанола более высокое октановое число. Наличие кислорода в молекуле метанола обеспечивает более полное сгорание и уменьшение объема выхлопных газов. В них меньше оксида углерода, практически нет серы и, конечно, нет свинца.
Но зато при работе на метаноле требуется увеличение объема топливных баков. Больше теплоты нужно подводить во всасывающую систему для испарения топлива, а это значит, что существующие системы двигателей внутреннего сгорания для работы на метаноле необходимо переделывать. Постоянная температура кипения метанола затрудняет запуск мотора при низких температурах, требует применения специальных мер, например, впрыскивания в запускаемый двигатель высоколетучей жидкости (эфира). Метанол разрушает слой полуды в топливных баках, а образующийся при этом гидроксид свинца забивает топливные фильтры и жиклеры карбюраторов. Увеличивается также коррозия двигателя и элементов топливной системы, причем особенно страдают детали из магния, алюминия и их сплавов. Кроме того, в метаноле быстро набухают и теряют герметичность многочисленные прокладки и уплотнения…
Словом, автомобили тех лет были плохо приспособлены для работы на метаноле. И потому, как только появилась возможность, специалисты стали использовать традиционные бензин и солярку. Однако накопленный опыт не забылся. И по сей день конструкторы вместе с учеными обсуждают более широкие возможности применения «растительного горючего».
Например, практичные японцы в качестве сырья для производства моторного топлива хотят использовать водоросли. Норвежцы считают перспективной для той же цели переработку хвойной древесины – той ее части, которая обычно идет в отходы: опилки, сучья, непосредственно саму хвою… В Новой Зеландии получены первые тонны горючего из апельсиновых корок, а в Мексике проведены успешные опыты по переработке кактусов!
Итак, выясняется, что в принципе мотор можно питать практически любым органическим сырьем. В Бразилии, к примеру, даже самолеты летают «на растительном масле».
Однако вся эта экзотика, как уже говорилось, не от хорошей жизни. В той же Бразилии практически нет своих месторождений нефти, вот и приходится выкручиваться… В такой ситуации, конечно, уж мало берутся в расчет и низкая теплота сгорания такого топлива, и его высокая стоимость.
А в Германии времен третьего рейха синтетический бензин приходилось делать и из угля. Были попытки даже залить в автомобильный двигатель… воду! Причем для этого ее не разлагали на водород и кислород, расходуя на это большие количества энергии. Нет, воду пытались и пытаются добавлять в двигатель и без разложения, так сказать, в натуральном состоянии.
Еще на заре автомобилизма было замечено, что в сырую погоду двигатели как будто работают лучше. Проведенные исследования показали: да, в моторное топливо можно добавлять до 10 процентов воды, и двигатель будет работать.
Впрочем, как утверждают некоторые эксперты, двигатель при некоторых условиях может работать чуть ли не на чистой воде. Вот какую историю, например, рассказала читательница из г. Пензы Е. Ф. Палатова. Согласно ее данным, в США еще в период Первой мировой войны проводились испытания «горючего» для двигателей внутреннего сгорания, предложенного португальским эмигрантом Хуаном Андрэсом.
Основную часть его составляла вода (пресная или соленая, безразлично), в которую добавлялась неизвестная жидкость, имевшая зеленоватый оттенок. В печати приводились случаи, когда изобретатель на глазах свидетелей готовил исходную смесь из медикаментов, купленных в ближайшей аптеке. Смешав их в ведре с водой, он заливал топливный бак и заводил двигатель. После регулировки игольчатого клапана, изобретатель добивался устойчивой работы мотора, дававшего выхлоп без цвета и запаха.
Испытания проводились на автомобиле «Паккард» и на трехцилиндровом двухтактном судовом двигателе. Расход смеси составлял примерно 50 литров на 100 километров пути. Многовато, конечно, но не забывайте – и двигатели брались достаточно мощные, и топливо стоило баснословно дешево.
Будучи по образованию инженером-электрохимиком, Палатова вместе с коллегами попыталась разгадать ребус эмигранта. «Итак, все поршневые двигатели работают за счет газообразной массы высокого давления, которая поступает в цилиндр извне (сжатый водяной пар), либо образуется внутри цилиндра вследствие сгорания жидкого топлива, – рассуждала она. – В первом случае мы имеем место с паровыми машинами, во втором – с двигателями внутреннего сгорания. Те и другие имеют свои преимущества и недостатки».
Привлекательность паровой машины состоит в том, что рабочее тело – водяной пар – не отравляет окружающую среду. Естественно возникает вопрос: есть ли возможность создать непосредственно внутри цилиндра высокое давление пара? Андрэс ответил утвердительно: «Да, если использовать энергию взрывчатого вещества… «
Действительно, при взрыве даже небольших количеств взрывчатки образуются большие объемы газов и выделяется много тепла. Энергия взрыва и тепла может довести воду до газообразного состояния с высоким давлением. «Очевидно, Андрэс в качестве взрывчатого вещества выбрал нитроглицерин, – пишет Палатова. – Я полагаю так, поскольку в виде однопроцентного спиртового раствора нитроглицерин можно купить в аптеке, где он продается в качестве лекарства, расширяющего кровеносные сосуды».
В чистом виде нитроглицерин – тяжелая маслянистая жидкость, застывающая при температурах ниже 13оС. В воде растворяется плохо: всего 1,8 г на литр. Зато хорошо растворим в спирте – до 250 г на литр. При нагреве до 260°С и детонации взрывается. Причем процесс взрыва мгновенно охватывает всю массу нитроглицерина, переводя все молекулы разом в некую смесь газов.
Как показывает анализ, смесь газов, образующихся при взрыве, содержит от 58 процентов углекислого газа, 20 процентов водяного пара, 18 процентов азота и 4 процента кислорода. Все газы абсолютно нетоксичны, являются природными составляющими атмосферы Земли.
«Полагаю, в связи с вышесказанным, что „горючее“ Анрэса представляло собой водную эмульсию нитроглицерина, – заканчивает свое письмо Палатова. – Он готовил ее, приливая к воде смесь аптечного спиртового раствора нитроглицерина с эмульгатором. Причем эмульгатором могло служить жидкое калийное ( „зеленое“) мыло, которое также продается в аптеках. Так и получалась та зеленоватая жидкость, которую Андрэс вводил в воду перед ее заливкой в топливный бак, подобрав экспериментально-опытным путем количественное соотношение всех компонентов».
Как видите, ребус Андрэса оказался не столь уж сложен. И если его разгадал человек без особой подготовки, то, наверное, германские химики, издавна пользовавшиеся высокой репутацией во всем мире, и подавно справились с этой задачей. Тем более что перед войной, как показал даже беглый поиск, было немало публикаций на эту тему. Были проведены и эксперименты, целью которых являлся поиск оптимального состава горючего и наработка практического опыта по его применению. Однако этим экспериментам так и не суждено было выйти за пределы полигона. Почему? Ведь Германия, как уже неоднократно говорилось, остро нуждалась в замене натуральных нефтепродуктов синтетическими.
Причин тому несколько. Назовем хотя бы основные. В принципе затолкать в двигатель можно что угодно, даже нафталин – подобные опыты проводились еще в 20-е годы. Весь вопрос, насколько это выгодно и рационально?
Опыт же показал, что, если даже в двигатель добавляют незначительное количество воды, это приводит к резкому ухудшению его характеристик и долговечности. Кроме того, нитроглицерин – достаточно капризная, небезопасная в обращении жидкость. Не случайно небезызвестный Альфред Нобель потратил немало времени и сил прежде, чем смог получить динамит – довольно безопасную в обращении взрывчатку. В общем, Нобелевскую премию за использование нитроглицериновых смесей в качестве горючего не удалось пока получить никому. И те же химики третьего рейха предпочли пойти другим путем – стали получать синтетический бензин, например, из угля.
Был у них в запасе и еще один способ. Нефть, оказывается, можно добывать прямо из… воздуха!
Надо сказать, что история этого рецепта тоже достаточно давняя. Еще в 1908 году русский химик Е. И. Орлов обратил внимание на возможность синтеза нефтяных углеводородов из оксида углерода и водорода. Эта смесь называется еще водяным газом (или синтез-газом) и в достаточных количествах содержится в атмосфере.
Спустя несколько лет после Первой мировой войны этот способ был опробован на практике. Кайзеровская Германия оказалась отрезанной от природных источников нефти, и вот немецкие ученые К. Фишер и А. Тропш в 1922 году отработали технологию получения синтетических жидких углеводородов на практике.
Правда, водяной газ они решили поначалу получать не из воздуха, так как это оказалось технически слишком сложно, а из бурого угля. Синтез углеводородов осуществлялся при контакте этого газа с железоцинковыми катализаторами при высокой температуре. В 1936 году были введены в действие первые промышленные установки.
Всего было запущено 14 установок общей производительностью около миллиона тонн топлива в год. Они успешно проработали до конца Второй мировой войны.
Когда же послевоенная Германия получила доступ к дешевой природной нефти, постепенно все европейские и азиатские установки по производству синтетического топлива были остановлены или переведены на выпуск другой продукции. Зато в ЮАР, которая подверглась нефтяному эмбарго со стороны мирового сообщества и где к тому же добыча угля обходится чрезвычайно дешево, в середине 1980-х годов производилось около 4 миллионов тонн жидких углеводородов ежегодно.
И лишь в наши дни идея получения топлива из воздуха, а точнее, из содержащегося в нем диоксида углерода, похоже, приобретает особую остроту. Огромное количество сжигаемого на планете топлива грозит образованием так называемого «парникового эффекта». Из-за повышенного содержания углекислого газа в атмосфере часть солнечных лучей, которой полагалось бы отразиться от поверхности планеты и уйти назад в космическое пространство, теперь задерживается. А это, как полагают некоторые эксперты, в конце концов способно привести к всеобщему потеплению климата на Земле.
На первый взгляд, ничего страшного. Ну станет теплее на градус-другой. Что плохого? Но такое потепление, как показывают расчеты, может привести к тому, что значительная часть нынешней суши окажется затопленной. Вот ученые и предлагают способ, как зло обратить в благо. Прежде всего из атмосферного воздуха нужно выделить излишний диоксид углерода.
Уже сегодняшняя технология предлагает для этого несколько способов. Составляющие воздуха можно разделять при помощи пористых мембран, вымораживать или соединять в определенных условиях с газообразным аммиаком. Аммиак, реагируя с диоксидом углерода, образует карбонат аммония. Этот белый кристаллический порошок легко отделяется от газообразных компонентов чисто механическим путем – в аппаратах типа циклонов или центробежных сепараторов.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73


А-П

П-Я