https://wodolei.ru/catalog/rakoviny/umyvalniki/ 

 

Например, при кратковременном облучении ярким светом смеси хлора с водородом реакция между этими газами протекает со взрывом и практически до конца, тогда как в темноте хлор и водород вообще не реагируют.
Нернст объяснил причины такого влияния света. При облучении смеси светом (даже кратковременном) молекула хлора расщепляется на два одиночных атома. Атом хлора (который намного активнее, чем в составе молекулы) отрывает атом водорода от молекулы водорода и образует молекулу хлорида водорода. Оставшийся атом водорода отрывает атом хлора от молекулы хлора; оставшийся атом хлора отрывает атом водорода от молекулы водорода и т. д. Таким образом, даже незначительное облучение вызывает фотохимическую цепную реакцию , которая протекает со скоростью взрыва и завершается образованием большого количества молекул хлорида водорода.
Ионная диссоциация [83]
Крупнейшим физико-химиком на рубеже XIX-XX вв. наряду с Вант-Гоффом и Оствальдом был шведский ученый Сванте Август Аррениус (1859—1925) [84]. Еще будучи студентом Упсальского университета, Аррениус заинтересовался электролитами, т. е. растворами, способными пропускать электрический ток.
Из установленных Фарадеем законов электролиза вытекало, что электричество, подобно веществу, обусловлено существованием, движением и взаимодействием мельчайших частиц (см. гл. 5). Фарадей вел речь об ионах, которые можно рассматривать как частицы, переносящие электричество через раствор. Однако в течение следующего полустолетия ни он и никто другой не занимался серьезно изучением природы таких ионов, хотя работы в этом направлении вообще-то велись. В 1853 г. немецкий физик Иоганн Вильгельм Гитторф (1824—1914) установил, что одни ионы перемещаются быстрее других. Это наблюдение привело к появлению понятия число переноса — характеристики, зависящей от скорости, с которой отдельные ионы переносят электрический ток. Однако даже после того, как химики научились рассчитывать эту скорость, вопрос о природе ионов оставался открытым.
Аррениус занялся исследованиями в области физической химии после знакомства с работой французского химика Франсуа Мари Рауля (1830—1901). Как и Вант-Гофф, Рауль изучал растворы. Наибольшего успеха Рауль достиг в 1887 г., когда установил, что парциальное давление паров растворителя, находящихся в состоянии равновесия с раствором, пропорционально молярной концентрации растворителя.
Эта зависимость, известная нам как закон Рауля , позволила приблизительно подсчитать относительное число частиц (атомов, молекул или загадочных ионов) растворенного вещества и растворителя (жидкости, в которой растворено данное вещество).
В ходе этих исследований Рауль измерял температуры замерзания растворов. Как выяснилось, температура замерзания раствора всегда была ниже температуры замерзания чистого растворителя. Раулю удалось показать, что понижение температуры замерзания пропорционально числу частиц растворенного вещества, присутствующих в растворе.
Однако на этом этапе ситуация усложнилась. Логично было предположить, что при растворении, например в воде, вещество распадается на отдельные молекулы. Однако наблюдаемое понижение температуры замерзания соответствовало предполагаемому только в тех случаях, когда растворялся неэлектролит, например сахар. При растворении электролита типа поваренной соли NaCl понижение температуры замерзания вдвое превышало ожидаемое, т. е. число частиц, содержащихся в растворе, должно было быть в два раза больше числа молекул соли. А при растворении хлорида бария BaCl2 число частиц, находящихся в растворе, должно было превышать число молекул втрое.
Как известно, молекула хлорида натрия состоит из двух, а молекула хлорида бария — из трех атомов, и Аррениус пришел к мысли, что при растворении в растворителях, подобных воде, определенная часть молекул распадается на отдельные атомы. Более того, поскольку эти распавшиеся молекулы проводят электрический ток (в то время как молекулы, подобные молекуле сахара, не распадаются и не проводят электрический ток), Аррениус предположил, что молекулы распадаются (или диссоциируют) не на обычные атомы, а на атомы, несущие электрический заряд.
Аррениус предположил, что ионы Фарадея — это атомы (или группы атомов), несущие положительный или отрицательный электрический заряд. Ионы либо сами представляют собой «атомы электричества», либо несут эти «атомы электричества». (Последнее предположение в конечном счете оказалось верным.) С помощью созданной им теории ионной диссоциации Аррениус объяснил многие электрохимические явления.
Идеи Аррениуса, изложенные в 1884 г. в диссертации на степень доктора натурфилософии, были встречены очень холодно. Диссертацию едва не отклонили, однако за пределами Швеции она вызвала большой интерес. Особенно хорошее впечатление она произвела на Оствальда, и он предложил Аррениусу место в своей лаборатории. Оствальд поддерживал Аррениуса в плане продолжения работ последнего в области физической химии.
В 1889 г. Аррениус выдвинул другую плодотворную идею. Он указал, что молекулы, сталкиваясь, не реагируют, если не обладают определенным минимумом энергии, иначе говоря, энергией активации . При малой энергии активации реакции проходят быстро и беспрепятственно, при высокой энергии активации реакция может протекать с бесконечно малой скоростью. Если же в последнем случае поднять температуру настолько, чтобы ряд молекул приобрел необходимую энергию активации, то скорость реакции может резко повыситься и даже закончиться взрывом. Примером такой реакции может служить реакция смеси водорода и кислорода: после достижения температуры воспламенения смесь взрывается.
Оствальд удачно использовал эту идею в разработанной им теории катализа. Он показал, что образование промежуточного продукта в виде соединения с катализатором (см. разд. «Катализ») требует меньшей энергии активации, чем непосредственное образование конечных продуктов реакции.
Еще о газах
В конце XIX в. в период расцвета физической химии ученые вновь начали изучать свойства газов, пользуясь разработанными к тому времени новыми усовершенствованными методами.
Так, французский химик Анри Виктор Реньо (1810—1878) провел большое количество тщательных измерений объемов и давлений газов и показал, что установленная Бойлем за три столетия до этого зависимость между объемом и давлением данного количества газа не вполне точна. Причем отклонения от закона наблюдаются главным образом при увеличении давления или при понижении температуры.
Примерно в то же самое время анализом поведения газов занимались шотландский физик Джеймс Кларк Максвелл (1831—1879) и австрийский физик Людвиг Больцман (1844—1906). Эти ученые установили следующее. Если предположить, что газы представляют собой совокупность большого числа беспорядочно движущихся частиц (кинетическая теория газов ), то закон Бойля выполняется в том случае, если, во-первых, между молекулами газа не действуют силы притяжения и, во-вторых, молекулы газа имеют нулевые размеры. Газы, отвечающие этим требованиям, были названы идеальными газами .
Ни одно из этих требований не соответствует действительному положению дел: молекулы газов испытывают действие сил притяжения, хотя и небольшого, молекулы газов чрезвычайно малы, но все же имеют определенные конечные размеры. Определению «идеальный газ» практически не соответствует ни один из известных газов, хотя свойства водорода и открытого позднее гелия (см. гл. 8) весьма близки к свойствам идеального газа.
В 1873 г. голландский физик Иоганнес Дидерик Ван-дер-Ваальс (1837—1923) вывел уравнение, связывающее давление, объем и температуру газов. Это уравнение включает две константы a и b (характерные для каждого газа), учитывающие размер молекул газов и притяжение между ними.
Изучение свойств газов помогло решить проблему их сжижения. Жидкий аммиак был получен еще в 1799 г. путем охлаждения под давлением газообразного аммиака (с повышением давления повышается температура, при которой сжижается газ, и намного облегчается процесс сжижения). Особенно много этим вопросом занимался Фарадей. К 1845 г. ему удалось сжижить ряд газов, в том числе хлор и диоксид серы. Сразу же, как только давление снижалось до нормального, сжиженный газ начинал быстро испаряться. Поскольку процесс испарения проходит с поглощением тепла, температура оставшейся жидкости резко понижалась. В этих условиях жидкий диоксид углерода затвердевал. Смешав твердый диоксид углерода с эфиром, Фарадей смог понизить температуру до –78°С.
Однако все попытки сжижить такие газы, как кислород, азот, водород, оксид углерода и метан, оказались напрасными. Фарадею не удалось их сжижить даже при очень высоких давлениях. Эти газы стали называть «постоянными газами».
И тем не менее в 60-х годах прошлого века ирландский химик Томас Эндрюс (1813—1885), изучавший диоксид углерода, сумел, меняя только давление, сжижить этот газ. Медленно повышая температуру, он установил, как при этом необходимо повышать давление, чтобы сохранить диоксид углерода в жидком состоянии. Выяснилось, что при температуре 31°С любое давление оказывается недостаточным. При этой температуре газообразная и жидкая фазы фактически, если так можно выразиться, «сплавлены» вместе и поэтому неразделимы. Эндрюс предположил (в 1869 г.), что для каждого газа существует критическая температура и что при температуре выше критической сжижить газ не удастся даже при очень высоких давлениях. Следовательно, «постоянные газы» — это просто-напросто газы, критические температуры которых гораздо ниже температур, достижимых в лабораторных условиях.
Тем временем Джоуль и Томсон (см. разд. «Теплота») при изучении теплоты обнаружили, что газы могут охлаждаться, если им дать возможность расшириться. Таким образом, если дать газам расшириться, а затем снова сжать в таких условиях, при которых потери теплоты не будут восполняться, а затем снова дать газам расшириться и повторить этот цикл несколько раз, то можно достичь очень низких температур. Как только температура газа снизится ниже критической, можно повысить давление и сжижить газ.
Используя этот метод, французский физик Луи Поль Кайете (1832—1913) и швейцарский химик Рауль Пикте (1846—1929) к 1877 г. сжижили такие газы, как кислород, азот и оксид углерода. Однако сжижить водород им так и не удалось.
Работа Ван-дер-Ваальса ясно показала, что для водорода эффект Джоуля — Томсона наблюдается только после того, как температура его снизится ниже некоторого определенного значения. И чтобы снизить температуру водорода до требуемого значения, перед проведением цикла расширения газ следует охладить.
В 90-х годах прошлого века над этой проблемой начал работать шотландский химик Джеймс Дьюар (1842—1923). Он приготовил в большом количестве жидкий кислород, который хранил в изобретенном им сосуде, получившем название сосуда Дьюара . Сосуд Дьюара — это колба с двойными стенками, из пространства между которыми выкачан воздух. Теплопроводность разреженного газа между стенками настолько мала, что температура вещества, помещенного в сосуд, долгое время остается постоянной. Чтобы еще более замедлить процесс передачи тепла, Дьюар посеребрил стенки сосуда. (Бытовой термос — это всего-навсего сосуд Дьюара, закрывающийся пробкой.)
Газообразный водород можно охладить до очень низких температур, погружая его в жидкий кислород, помещенный в сосуд Дьюара, и затем сжижить, используя эффект Джоуля — Томсона. В 1898 г. Дьюар первым получил жидкий водород.
Водород сжижается при 20 К, т. е. при температуре всего на двадцать градусов выше абсолютного нуля [85], но это не самая низкая температура сжижения. В 80-х годах прошлого века были открыты инертные газы (см. разд. «Теплота»), и один из этих газов, гелий, сжижается при еще более низкой температуре.
Получить жидкий гелий первым удалось голландскому физику Хейке Камерлинг-Оннесу (1853—1926). В 1908 г. он сначала охладил гелий в ванне с жидким водородом, а затем, использовав эффект Джоуля — Томсона, получил при температуре 4 К жидкий гелий [86].
Глава 10 Синтетическая органическая химия
Красители
Первая половина XIX в. ознаменовалась развитием новой области химии — синтетической органической химии . Химики вслед за Бертло (см. гл. 6) начали соединять в цепи органические молекулы. Недостаточное понимание строения молекул мешало химикам-органикам середины XIX в., но прогресс науки настолько неотвратим, что этот недостаток, по крайней мере в одном знаменательном эпизоде, оказался преимуществом.
В то время (40-е годы прошлого века) в Великобритании было немного известных химиков-органиков, и работавший у Либиха (см. гл. 6) Август Вильгельм Гофман (1812—1892) был приглашен в Лондон из Германии. Спустя несколько лет Гофман взял к себе в качестве помощника совсем еще юного Уильяма Генри Перкина (1838—1907). В то время Гофман исследовал химические вещества, получаемые из каменноугольного дегтя (густой черной жидкости, образующейся при нагревании каменного угля без доступа воздуха). Однажды Гофман в присутствии Перкина начал рассуждать вслух о возможности синтеза хинина — ценного лекарственного средства против малярии — из каменноугольного дегтя. Если бы синтез хинина удался, Европа избавилась бы от зависимости от поставщиков хинина, привозивших его из далеких тропиков.
Загоревшись этой идеей, Перкин сразу же принялся за дело (дома у него была своя небольшая лаборатория). Если бы он или Гофман больше знали о строении молекулы хинина, то они поняли бы, что эту задачу нельзя решить, основываясь на методах химии середины XIX в. К счастью, Перкин был относительно этого в блаженном неведении, и хотя ему не удалось синтезировать хинин, он достиг, возможно, большего.
Во время пасхальных каникул 1856 г. Перкин, пропадая в лаборатории, обработал анилин бихроматом калия и, разочарованный результатом, уже собрался было выбросить полученную массу, как вдруг заметил, что она приобрела пурпурный оттенок.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28


А-П

П-Я