https://wodolei.ru/catalog/dushevie_ugly/70x90cm/ 
А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 


14.2.1. К фотохимическим явлениям относится и так называ-
емый фотохромный эффект, который состоит в следующем.
Некоторые химические вещества обычно со сложным строением
молекулы, изменяют свою окраску под действием видимого или
ультрафиолетового излучения. В отличии от обычного выцветания
красок этот эффект обратим. Первоначальная окраска или отсутс-
твие таковой восстанавливается через некоторое время в темно-
те, под действием излучения другой частоты или при нагревании.
Но наведенную окраску можно и сохранить сколь угодно долго,
если охладить фотохромное вещество или обработать его некото-
рыми газами, фотохромизм восстанавливается при соответсвующей
вторичной обработке.

Скорость окрашивания и интенсивность окраски зависят не
только от структуры молекул самого фотохромного соединения, но
и от среды в которую оно может быть введено (стекло, керамика,
жидкость, пластмасса, ткань и др.).

Многие фотохромные вещества при облучении интенсивным
светом могут темнеть, причем их "быстродействие" достигает
несколько микросекунд. Это позволяет использовать фотохромные
тела как светохатворы для защиты глаз или светочувствительных
приборов от неожиданной вспышки мощного излучения. Есть воз-
можность использовать их как регуляторы светопропускания в за-
висимости от интенсивности света.

Фирма "Корнинг Гласс" выпустила светозащитные очки с фо-
тохромными стеклами, изменяющими степень светопропускания в
зависимости от интенсивности потока ультрафиолетовых лучей.
А.с.267 967: Устройство для представления информации в
трехмерной форме, отличающееся тем, что с целью улучшения сте-
реоскопического восприятия трехмерных изображений и упрощения
устройства оно содержит три параллельных ряда плоских панелей,
на противоположных концах которых нанесены изготовленные из
фотохромного материала активные зоны одна из которых служит
для просмотра изображения, а другая - для обработки информа-
ции, причем все панели установлены на разной высоте на трех
осях вращения, сдвинутых относительно друг друга на 120 граду-
сов.
2. Устройство по пункту 1, отличающееся тем, что над каж-
дой из фотохромных информационных панелей в зоне, противопо-
ложной зоне просмотра, установлена матричная излучающая па-
нель.
3. Устройство по пункту 1, отличающееся тем, что к каждой
из панелей подведена линейка волоконных световодов связанных с
источником импульсов излучения активизирующего фотохромный ма-
териал.
Патент США 3 558 802: Устойчивое фотохромное воспроизво-
дящее устройство, предназначенном для работы с плекой покрытой
фотохромным материалом, содежащим сахарин, имеется центральная
камера, в которой находится электроннолучевая трубка. На нор-
мальной прозрачной пленке образубтся непрозрачные участки об-
ратимого изображения соответствующего изображению на экране
электронно-лучевой трубки. При обработки пленки двуокисью се-
ры, находящейся в газообразном состоянии, проэкспонированные
участки фотохромного материала остаются непрозрачными. После
этого газ откачивается и камеру подается тепловое излучение,
обращающее те обработанные газообразной двуокисью серы участ-
ки, которые были прозрачными во время экспонирования. Участки
пленки, временно сделавшиеся не прозрачными под воздействием
изображения, проявляющегося на экране электронно-лучевой труб-
ки, постоянно фиксируются. В состав конструкции устройства
входит камера для ввода пленки и камера для вывода пленки ,
связанные с вакуумной откачивающей системой. Выходящая из
центральной камеры двуокись серы в газообразном состоянии за-
сасывается вакуумной откачной системой и не попадает в атмос-
феру.
14.2.2. В основе фотохимических процессов лежит взаимо-
действие излучения с электронами вещества. Это преполагает на-
личие возможности управлять ходом фотохимической реакции воз-
действие электрического поля. Возможно, что природа недавно
открытого фотоэлектрического эффекта обьясняется стимуляцией
фотохромного эффекта электрическим полем. Эффект состоит в
следующем: На тонкую прозрачную пластину керамики с включением
железа, свинца лантана, цикония и титана, помещенную в посто-
янное электрическое поле, перпендикулярное ее поверхности,
проектируют негативное изображение видимых и ультрафиолетовых
лучах. При этом в пластине появляется видимое позитивное изоб-
ражение здесь наблюдается интересная особенность: При измене-
нии направления поля на обратное, изображение из позитивного
становится негативным. Изображение устойчиво и стирается лишь
при равномерном облучении ультрафиолетовыми лучами с одновре-
менной переполюсовкой поля.

Американские специалисты открывшие этот эффект предпола-
гают его использовать в утройствах для хранения визуальной ин-
формации.
Л И Т Е Р А Т У Р А
к 14.1.1. С.Ю.Лукьянов, Фотоэлементы, М-Л, 1968.
2. С.Таланский, Революция в оптике, М.,"Мир",1971.
3. А.В.Соколов, Оптические свойства металлов, М.,1961.
4. А.Н.Арсеньева-гейль,Внешний фотоэффект с полупровод-
ников и диэлектриков, М.,1957.
5. Р.Бьюб,Фотопроводимость твердых тел,М.,1962.
6. С.М.Рывкин, Фотоэлктрические явления в полупровод-
никах, М.,1963.
7. А.М.Васильев и др., Полупроводниковые преобразова-
тели, М.,"Соврадио",1971.
к 14.2.1. Г.С.Ландсберг,"Оптика", М.,"Наука",1976.
2. Б.Баршевский,Квантовооптические явления, М.,
"Высшая школа",1968.
3. Фотоферроэлектрический эффект,"Техника молодежи"-5,
1977.
15. ЛЮМИНИСЦЕНЦИЯ.
Люминесценцией называется излучение, избыточное над теп-
ловым излучением тела, и имеющее длительность, прерывающую пе-
риод световых колебаний. Люминесценция возникает при возбужде-
нии вещества за счет притока энергии, и в отличии от других
видов "холодного" свечения (например, излучение Вавилова-Чер-
никова), продолжается в течении некоторого времени после прек-
ращения возбуждения (1,2).

О продолжительности после свечения выделют флуоресценцию
(менее 10 сек.) и фосборесценцию; последнее продолжается в за-
метный промежуток времени после снятия возбуждения (от 10 сек.
до нескольких часов).
Способность люминесцировать обладает большая группа, га-
зообразных, жидких и твердых веществ, как органических так и
неорганических (люминофоров). Характер процесса люминесценции
существенным образом зависит от агрегатного состояния вещества
и типа возбуждения.

Люминофоры являются своеобразными преобразователями энер-
гии из одного вида в другой; на входе это может быть энергия
электромагнитного излучения, энергия ускореннго отока частиц,
энергия химических реакций или механическая энергия, - любой
вид энергии, кроме тепловой, - на выходе - световое излучение.
Отдельные атомы и молекулы люминофора, поглощая один из этих
видов энергии, возбуждаются, т.е. перходя на более высокие
энергетические уровни по сравнению с павновесным состоянием, и
затем самопроизвольно совершают обратный переход излучая избы-
ток энергии ввиде света. Способ возбуждения лежит в основе
классификации различных видов Люминесценции.
15.1. Люминесценции, возбуждаемая электромагнитным излу-
чением.
15.1.1. Фотолюминесценция - свечение возникающее при пог-
лощении люминофором ИК, видимого или УФ-излучения. Спектр пог-
лощения и излучения люминофоров связаны правилом Стокса-Люмиа-
ля, согласно которому максимум спектра излучения смещен по
отношению к максимуму спектра поглощения в сторону длинных
волн (например, при облучении ультрафиолетом люминофор излуча-
ет видимый свет).
А.с. 331 271: Способ контроля геометричности сварных из-
делий с помощью люминофора, при котором изделие направляют
ультрафиолетовые лучи и судят о герметичности по свечению лю-
минофора, отличающийся тем, что с целью повышения производи-
тельности путем осуществлениЯ контроля непосредственно в про-
цессе сварки, люминоформную суспензию наносят на внутреннюю
поверхность свариваемых деталей перед сваркой, а в качестве
источника УФ-лучей используют сварочную дугу.
А.с. : Способ количественного определения горечи (кукур-
битационов) в огурцах, включиющий взятие образцов экстрогиро-
вание спиртом и определение кукурбитационов, отличающееся тем,
что с целью ускорения процесса, экстракт облучают ультрафиое-
товым светом измеряют интенсивность вторичного свечения и ко-
личество кукурбитационов, определяют по показаниям прибора и
калибровочному графику.
Наиболее широко фотоЛюминесценция применяется в лампах
дневного света. В них свечение люминофора происходит под дейс-
твием ультрафиолета, которым богато излучение газоразрядной
части лампы ( в связи с наличием паров ртути).
15.1.2. Однако есть исключение из правила Стокса-Люмеля -
это так называемые, антистоксовские люминофоры, которые при
возбуждении в ИК-области спектра излучают в видимой области.
Применение этих люминофоров связано с преобразованием ИК-
излучения в видимое например, для визуализации излучения
ИК-лазеров, для создания лазеров видимого диапазона с ИК-на-
качкой, а светодиодов.
15.1.3. РентгеноЛюминесценция. Специфика возбуждения
рентгеновскими лучами, по сравнению с фотовзбуждением, состоит
в том, что на люминофор воздействуют фотоны со значительно
большей энергией. При этом свечение люминофора вызывается не
непосредственым действием самих рентгеновских лучей, в воз-
действием электронов, выраваемых из основы люминофора рентге-
новскими лучами. Вследствие этого ретгеноЛюминесценция имеет
многие общие черты с катодоЛюминесценцией (3).

Основное применение - в экранах для рентгеноскопии и
рентгенографии.
15.2. Люминесценция, возбуждаемая корпусным излучением.

15.2.1. КатодоЛюминесценция - возбуждается воздействием
на люминофор потока электронов. Основное применение - визуали-
зация электронного изображения на экранах телескопов телевизо-
ров, осцилографов и других подобных приборов, а также элект-
роннооптических преобразователей (3).

15.2.2. ИоноЛюминесценция - свечение возникающее при бом-
бардировке люминофора пучком ионов.

При ионоЛюминесценции, также как при катодоЛюминесценци,
энергия возбуждения поглощается в тонком приповерхностном слое
люминофора, поэтому здесь оказывает состояние поверхности, в
частности, хемосороция различных газов (см."Сороция")(3,4).
15.2.3. РадиоЛюминесценция. Для создания самосветящихся
красок постоянного действия, не нуждающихся в поточниках внеш-
него возбуждения, в люминофор вводят радиоактивные изотопы
продукты распада которых (например, альфа и бетта частиц) воз-
буждают в нем свечение. Время в течении которого люминофор из-
лучает свет, определяется периодом полураспада изотопа (десят-
ки лет). РадиоЛюминесценция все более широко применяется в
дозиметрии радиоактивных излучений (3).
15.3. Люминесценция, возбуждаемая электрическим полем
(5).

15.3.1. ЭлектроЛюминесценция (эффект Дестрио). Многие
кристаллические порошкообразные люминофоры, помещенные в кон-
денсатор, питаемый переменным напряжением 100-220 В. с часто-
той 400-3000 Гц. начинают интенсивно Люминесцировать. Спект-
ральный состав и интенсивность излучения существенно зависят
от частоты возбуждения. Некоторые люминофоры излучают и при
возбуждении постоянным электрическим полем (5).
А.с. 320710: Система для измерения распределения давления
на поверхности модели летательного аппарата, содержащая чувс-
твительный э.лемент, оптическое сканирующее устройство и фото-
электрический регистратор, отличающийся тем, что с целью обес-
печения возможности непрерывного измерения профиля давления на
исследуемой поверхности вдоль заданной линии, в ней чувстви-
тельный элемент выполнен ввиде электролюминесцентного конден-
сатора, одна обкладка которого образована поверхностью метал-
лической модели, а другая - прозрачным электропроводящим
слоем, между которыми нанесен электролюминесциновый слой и
слой диэлектрика, диэлектрическая проницаемость которого зави-
сит от давления, например, слой эпоксидной смолы.
Основная область применения электролюминесценсии - инди-
каторные устройства, подсветка шкал, преобразователи изображе-
ния. Применение электролюминофоров считают перспективным для
создания телевизионных экранов.
15.3.2. Инжекционная электролюминесценция (эффект Лосе-
ва). Свечение возникает под действием зарядов, инжектируемых в
полупроводниковые кристаллы. При пропускании тока через полуп-
роводниковый диод в области перехода инжектируются избыточные
носители тока (электроны и дырки), рекомендация которых сопро-
вождается оптическим излучением (3).

Широкое применение основанных на этом эффекте светодиодов
обусловленно следующими их особенностями: высокая надежность
(срок службы 10 в шестой степени часов), малое энергопотребле-
ние (1,5-30 В, 10 мА), малая инерционность (10 в минус девятой
степени сек.), высокая яркость свечения в зеленой, красной и
инфракрасной областях спектра.
А.с. 245 892: Устройство для регистрации электрических
сигналов на фотопленку, содержащее источник электрических сиг-
налов, измерительный механизм и механизм протягивания пленки,
отличающийся тем, что с целью повышения надежности и упрощения
конструкции, в нем измерительный механизм выполнен ввиде по-
лупроводникового электролюминесцентного преобразователя, сос-
тоящего из кристалла полупроводника с широкой запрещенной зо-
ной, содержащего p-n-переход и контакты с выводами, служащими
для пропускания тока электролюминесценции и тока управления
площадью свечения.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35


А-П

П-Я