https://wodolei.ru/catalog/mebel/rakoviny_s_tumboy/120/ 
А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 

А как хотелось бы знать: встречался ли Максвелл с геттингенцами? Как ему понравились европейские физические лаборатории? Может быть, он с затаенной завистью двигался вдоль заставленных приборами лабораторных столов французов и немцев? А может быть, он и вовсе не посетил эти лаборатории или из скромности, или из убежденности в превосходстве английской науки?
Не знаем мы, как это было, – нет документов. Путешествие Максвелла в Европу не привлекло ничьего внимания. А Льюис отметил только, что во время путешествия Максвелл совершенствовался в языках. Теперь он хорошо знал уже, кроме английского, греческий, латинский, итальянский, французский и немецкий.
– Никак не совладаю с голландским, – жаловался Максвелл. Языки давались ему очень легко, но вот голландский...
Ну да бог с ним, с голландским. Сколько дел ожидает дома, в Гленлейре! А главное – недописанные книги: «Теория теплоты» и «Трактат об электричестве и магнетизме». Максвелл давно уже по ним соскучился.
...Продумывая книгу «Теория теплоты», Максвелл неизбежно должен был решить для себя: что происходит при столкновении молекул? Как именно они сталкиваются?
Когда-то Максвелл написал на память своему знакомому, специалисту-механику Эдуарду Вильсону шуточную песню.
Она должна была исполняться на мотив популярной английской песни «Gin a body met a body» и была ее шуточным парафразом:
Джин однажды встретил тело
В полной пустоте.
Джин легонько стукнул тело:
Как оно? И где?
Все свое имеет меру,
Можно все решить,
Можно скажем для примера,
Путь определить.
Джин однажды встретил тело
В полной пустоте.
Куда оба отлетели -
Видели не все.
Всем проблемам есть решенье
Точное вполне.
Жаль, что это приключенье
Безразлично мне.
А теперь оказалось, что «это приключение» – столкновение твердых шариков – было совсем ему не безразлично. Дело в том, что в виде шариков обычно представляли молекулы, и то, как они сталкиваются, приобретало важное значение, особенно в связи с введением статистических методов.
То, как Максвелл подошел к этой проблеме в статье «По поводу динамической теории газов» (1866 год), еще раз продемонстрировало физикам его гениальность.
Описание закона взаимодействия молекул при использовании статистических методов оказалось делом чрезвычайно сложным. Даже самый простой случай – случай двух упругих шарообразных сталкивающихся молекул – приводил к невообразимым математическим трудностям.
И все-таки Максвелл решил задачу. Его решение выглядело обескураживающе дерзким: Максвелл решил приспособить молекулы к решению, а не наоборот.
Он взял молекулы со свойствами, легче ложащимися в рамки математических выкладок. Это, оказывается, было вполне допустимо, поскольку свойства газа, его трение и вязкость должны быть в большой мере независимы от того частного закона, который управляет столкновением двух молекул, – лишь бы соблюдался закон сохранения энергии!
Можно даже заменить достаточно быстрое дискретное явление – удар двух молекул друг о друга неким непрерывным, хотя и достаточно коротким процессом, например отталкиванием их друг от друга за счет сил, сильно зависящих от расстояния. При такой замене молекулы, достаточно отдаленные друг от друга, двигаются независимо; подлетая друг к другу, они испытывают резкое усиление сил отталкивания, тем большее, чем ближе друг к другу они находятся.
Остается лишь подобрать достаточно высокую степень, в которую нужно возвести расстояние, чтобы взаимодействие как можно больше зависело бы от расстояния и вместе с тем не представляло бы излишних трудностей для решения. Выбор степени уже не играл большой роли, поскольку основное условие – сохранение энергии и импульса – было соблюдено. Оказалось, что пятая степень расстояния – самая удобная: при ней можно было очень удобно определять минимальное расстояние сближения молекул при ударе, а относительная скорость молекулы перед ударом вообще сокращалась. Громадное облегчение для решения!
Больцман был потрясен остроумием максвелловского подхода. Он сравнивал работу Максвелла с величественной музыкальной драмой:
«Математики узнают стиль Коши, Гаусса, Якоби или Гельмгольца, прочитав всего несколько страниц, точно так же как музыканты с первых тактов узнают Моцарта, Бетховена или Шуберта. Элегантное совершенство выражений принадлежит, конечно, французу; правда, оно часто сочетается с некоторой немощью в построении умозаключений; высшая драматическая мощь свойственна англичанам, и больше всех – Максвеллу. Кто не знает его динамическую теорию газов?
Сначала величественно выступают вариации скоростей, затем выступают, с одной стороны, уравнения состояния, а с другой – уравнения центрального движения, и все выше вздымается хаос формул, но вдруг звучит четыре слова: «Возьмем n = 5». Злой демон V (относительная скорость двух молекул) исчезает так же внезапно, как неожиданно обрывается в музыке дикая, до сих пор все подавлявшая партия басов. Как от взмаха руки кудесника упорядочивается то, что раньше казалось неукротимым. Не к чему объяснять, почему произведена та или другая подстановка: кто этого не чувствует, пусть не читает Максвелла. Он не автор программной музыки, который должен комментировать свои ноты. Стремительно раскрывают перед нами формулы результат за результатом, пока нас не ошеломит заключительный эффект – тепловое равновесие тяжелого газа, и занавес падает».


Эту красивую цитату, однако, нельзя понимать слишком буквально. В статье «По поводу динамической теории газов» Максвелл отнюдь не говорил: «Возьмем n = 5».
Максвелл был более осторожен. Его слова звучали скромнее: «Будет показано, что из экспериментов по вязкости газов у нас есть основания принять, что n = 5».
Гениальность Максвелла отнюдь не сводилась к остроумию. Ее основой была раскованность его ума, колоссальный багаж знаний и удивительная физическая интуиция. Людвиг Больцман понимал это, может быть, лучше, чем кто-нибудь другой, поскольку сам был великим физиком. Именно ему суждено было завершить и развить Максвелловы статистические идеи, распространив их на контингент более общих случаев, и ввести в повседневный обиход физиков «статистику Максвелла – Больцмана», описывающую распределение скоростей молекул в разных условиях.
В Гленлейре была наконец завершена «Теория теплоты». В общем это был обычный курс теплоты, хотя и оплодотворенный статистическими идеями Максвелла. Но было в нем и необычное, сенсационное, интригующее – неприятие второго начала термодинамики в том виде, как его трактовали Вильям Томсон и Клаузиус. По Томсону и Клаузиусу, во всех тепловых процессах температурные уровни должны выравниваться, вся энергия в конце концов должна «обесцениться» и перейти в низшую, неупорядоченную форму – тепловую. И это в конечном счете должно привести к «тепловой смерти вселенной». В противодействие такой точке зрения Максвеллом был высказан в «Теории теплоты» парадокс. Максвелл предложил представить себе воображаемое миниатюрное существо, «...способности которого настолько изощрены, что оно может следить за каждой молекулой на ее пути и в состоянии делать то, что в настоящее время для нас невозможно... Предположим, что имеется сосуд, разделенный на две части А и Б перегородкой с небольшим отверстием, и что существо, которое может видеть отдельные молекулы, открывает и закрывает это отверстие так, чтобы дать возможность только более быстрым молекулам перейти из А в Б и только более медленным перейти из Б в А. Это существо, таким образом, без затраты работы повысит температуру в Б и понизит в А, вопреки второму началу термодинамики.
И действительно, это существо, казалось бы, без затраты работы создавало порядок из беспорядка: равномерно нагретый газ разделяется на две части – холодную и горячую, и неупорядоченность, энтропия системы уменьшались, вместо того чтобы увеличиваться. В ближайший же приезд в Кембридж Максвелл сообщил о парадоксе Стоксу, написал письма Томсону и Тэту. Парадокс с воображаемым существом, которому Томсон дал меткое прозвище «демон Максвелла», живо обсуждался, приветствовался, высмеивался. Но никем не был опровергнут. Многие физики того времени никак не могли быть довольны возможным существованием в природе, во всяком случае в физической науке, «демона Максвелла», непонятным образом усложнявшего, казалось бы, такую ясную, понятную и законченную картину мира.
Классический парадокс Максвелла держался довольно долго и попал во многие учебники. Русский поэт Андрей Белый, вспоминая годы своего учения у видного русского физика Николая Алексеевича Умова (Умов вместе с англичанином Пойнтингом ввел в теорию Максвелла существенное добавление в виде вектора электромагнитной энергии Умова – Пойнтинга), писал в своей поэме «Первое свидание».
И строгой физикой мой ум
Переполнял профессор Умов.
Над мглой космической он пел,
Развив власы и выгнув выю,
Что парадоксами Максвелл
Уничтожает энтропию...
Мир рвался в опытах Кюри
Атомной, лопнувшею бомбой
На электронные струи
Невоплощенной гекатомбой...
Многие пытались разрешить парадокс Максвелла. Смолуховский в 1912 году показал, что случайное движение молекул должно разрушить и демона, и дверку. Но наиболее радикальное изгнание демона произошло уже после 1929 года, после появления работы венгра Сцилларда. Оказалось, за получение информации нужно платить. Чтобы измерить скорость молекул, демон как минимум должен ее увидеть, то есть осветить, затратить некоторую энергию, увеличить энтропию. За информацию приходится платить энтропией. Второе начало осталось незыблемым, но смысл его оказался более глубоким и оптимистическим.
ГАМИЛЬТОН, ТЭТ, МАКСВЕЛЛ И КВАТЕРНИОНЫ
В гленлейрской глуши завершал Максвелл и основной труд жизни – «Трактат». Содержанием этой книги, конечно, были прежде всего статьи по электромагнетизму, и та, которую он написал еще в Кембридже, и две лондонские, и одна – уже гленлейрская, в которой впервые отчетливо прозвучала мысль не просто о магнитной, но и об электромагнитной волне.
Но было здесь и нечто новое, не присутствовавшее в статьях. В «Трактате» Максвелл широко использовал кватернионы.
Изобретение кватернионов, несомненно, было одним из величайших достижений человеческого ума. Отнюдь не сразу оцененным.
Восемьсот страниц чудовищной математики, изданных президентом Ирландской Королевской академии, членом-корреспондентом Санкт-Петербургской академии наук сэром Вильямом Роуэном Гамильтоном, были абсолютно неудобоваримы.
Сложность математических построений. Пугающая новизна. Деревянный, путаный язык. Полное отсутствие логики и последовательности. Все печальные атрибуты гениального труда.
Гамильтон был замечен с детства. Он выступал на сцене как вундеркинд, соревнуясь с «мальчиком-арифмометром». Студентом Тринити-колледжа в Дублине он написал статью «Теория лучевых систем», в которой предсказал явление конической рефракции. Двадцатилетнего студента назначили профессором в колледже, который он еще не окончил...
Со времени изобретения кватернионов в 1843 году до избрания Тэта через десять лет профессором в Белфасте судьба кватернионов была скорее плачевной. Они не получили сколь-нибудь широкого распространения. Злые языки утверждали, что Гамильтон изобрел кватернионы, пробираясь в пьяном виде после веселой пирушки по одному из дублинских мостов. Фантазиями «пьяницы» Гамильтона мало кто интересовался. Но с приходом Тэта на кафедру в Белфасте положение резко переменилось. Тэт подпал под сильнейшее влияние царившего в Дублине Гамильтона. Затеял с ним энергичную переписку. Одно из писем насчитывало 88 страниц. Подхватив знамя, Тэт развил, упростил, популяризировал его теорию, пронес как главное свое научное увлечение через всю жизнь. В 1867 году Тэт выпустил свой «Элементарный трактат о кватернионах», где в кватернионной форме были выражены важнейшие теоремы, использовавшиеся Максвеллом при построении теории электромагнитного поля, – теоремы Остроградского – Гаусса, Стокса, Грина.
Максвелл, ранее кватернионами не увлекавшийся, со все возрастающим волнением и заинтересованностью прочел в Гленлейре трактат старого школьного приятеля.
Максвелл давно уже достиг той фазы умственной активности, когда «даже случайные мысли начинают бежать по научному руслу». Он сразу же понял важность нового математического метода для своей теории. Оператор ?, «жаждущий продифференцировать что угодно», использовавшийся Тэтом вслед за Гамильтоном, обладал удивительными свойствами.
Зная, например, потенциал, можно было легко получить соответствующую силу. И получалось это без всяких дифференцирований, интегрирований, решения уравнений. Сила равна была просто оператору, умноженному на потенциал.
Максвелл первым из физиков подметил особенности кватернионного исчисления. Понятия «источника», «резервуара», «вихря», требовавшие раньше длинных объяснений, допущений, введений, механических моделей, причинившие столько беспокойства в ранних статьях, теперь уже естественно и легко укладывались в символику кватернионов.
Хотя оператор ? был совсем не так прост, как его написание, упрощение формы записи математических операций было настолько радикальным, что Максвелл, не колеблясь, принял кватернионы на вооружение.
Максвелл увидел, что свойства двух операторов Гамильтона соответствуют соотношению токов и порождаемых ими магнитных полей.
Сложные математические построения Максвелла, описывающие все известные факты из электричества и магнетизма, вмешались теперь в несколько коротких уравнений.
Восхищенный методами Гамильтона, Максвелл не заметил, что некоторые операции над кватернионами разработал уже не Гамильтон, а Тэт. Ссылаясь на Гамильтона, Максвелл частенько забывал сослаться на своего старого приятеля. В последний раз это произошло в 1870 году в Ливерпуле.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45


А-П

П-Я