Великолепно сайт Водолей 
А  Б  В  Г  Д  Е  Ж  З  И  Й  К  Л  М  Н  О  П  Р  С  Т  У  Ф  Х  Ц  Ч  Ш  Щ  Э  Ю  Я  AZ

 


4. Для брожения совершенно не обязательно присутствие в среде частиц белковых веществ (клейковины), которые, по мнению адептов химической теории, приходят в движение и, передавая его другим частицам, тем самым вызывают брожение или гниение. Сбраживание сахара с образованием спирта или молочной кислоты может происходить в среде, совершенно не содержащей белка, а имеющей в качестве единственного источника азота неорганическое соединение, например сернокислый аммоний».
Результаты экспериментальных исследований Пастера нанесли решительный удар по теории Либиха. Его сторонники не могли больше объяснять брожение передачей движения частиц и связывать его со смертью, с разложением гниющих веществ.
Но уже в самом начале шестидесятых годов Бертло прямо высказал мысль, что такая ограниченная биологическая точка зрения не должна удовлетворять физиолога, а тем более химика. Исходя из термохимических данных, Бертло утверждал, что брожение и жизнедеятельность дрожжевых клеток не связаны друг с другом, так как для синтеза живого вещества дрожжей нет необходимости в притоке энергии извне.
Развитие биохимии и ферментологии все более и более побуждало выдающихся ученых возвращаться к идеям Бертло. Постепенно число открытых «растворимых ферментов», т. е. энзимов, увеличивалось, и стало возможным осуществлять бесклеточный гидролиз ди- и полисахаридов, разложение белка, различные окислительные процессы. Все это привело к тому, что К.А. Тимирязева в лекции 1895 года заявил: «…Бертло, полемизируя с Пастером, указывал, что воззрение на брожение как на химический процесс, лежащий в основе того физиологического явления, которое наблюдал Пастер, — что это воззрение вытекает из неизбежного исторического хода развития всех наук и, в частности, физиологии, по которому сложные явления сводятся к простым и, следовательно, физиологические — к физическим и химическим. И, как мы видим, история уже оправдывает верность этой ссылки на нее Бертло…»
Надо сказать, что Пастер никогда не отрицал участия ферментов в брожении. Да это было бы и нелогично, так как, будучи химиком, он не мог себе представить превращение молекулы в спирт без цепи химических реакций, которые протекают внутри клетки: «…Прибавлю, что для меня всегда было загадкой, на каком основании думают, что мне было бы неудобно, если бы было сделано открытие растворимых ферментов в брожении или если было бы доказано превращение сахара в спирт независимо от жизнедеятельности клетки».
Бесспорно, что изучение бесклеточного брожения, исследования с дрожжевым соком и другими препаратами дали много ценного. Именно они позволили установить ту схему брожения, в частности спиртового, которая вошла во все руководства и является сейчас общепризнанной. «Но все эти исследования отвечают на вопрос, „как“ происходит этот процесс, — отмечает А.А. Имшенецкий, — но не отвечают на вопрос, „почему“ стало возможно это гармоничное, это исключительно сложное функционирование ферментов внутри дрожжевой клетки и „зачем“ те или иные процессы брожения возникли. Это лишь детализация основной идеи, которую развил тогда Пастер, а не противопоставление химической теории брожения биологической.
Пастер впервые как гениальный биолог дал исчерпывающий ответ, почему возникли брожения. Он объяснил целесообразность этих процессов и показал, что они необходимы для жизнедеятельности клеток, и если бы они не носили приспособительный характер, то не могли бы возникнуть в природе. Это иногда забывается в химических исследованиях.
Пастер указал на энергетическое значение брожений и показал, что они имеют экологическое значение. В своих исследованиях он неоднократно отмечает ту большую роль, которую играют продукты собственной жизнедеятельности бродящих микроорганизмов в изменении окружающей среды. Устанавливая, что один вид микроба вытесняет продуктами собственной жизнедеятельности другой, Пастер решает одну из интереснейших экологических задач. Здесь же следует заметить, что он отказался, в отличие от современных ему немецких исследователей, от поисков универсальной питательной среды, на которой могли бы расти все виды микробов без исключения, и впервые применил среды, исходя из экологии, т. е. условий существования микробов. Поэтому мы вправе считать Пастера также основоположником только еще развивающейся молодой отрасли микробиологии — экологии микроорганизмов».
Разгадка явлений брожения имела огромное практическое значение не только для французского виноделия, терпевшего огромные убытки от «болезней вина», но и сыграла исключительную роль в развитии биологической науки, практики сельского хозяйства и промышленности. Глубокое познание природы брожений дает возможность управлять их процессами. Это очень важно для хлебопечения, виноделия, изготовления многих пищевых веществ.
ОСНОВЫ ГЕНЕТИКИ
Человечеству потребовалось более 2500 лет, чтобы суметь раскрыть закономерности наследственности. «…Древние натурфилософы и врачи не могли правильно понять явления наследственности ввиду ограниченности и частично ошибочности их знания анатомии и физиологии органов размножения и процессов оплодотворения и даже развития, — отмечает известный советский генетик А.Е. Гайсинович. — Им было наиболее доступно изучение строения животных, и неудивительно, что они переносили на человека обнаруженные у животных особенности анатомии их половых органов…Происхождение мужского семени было неизвестно в древности, и это привело к созданию ошибочных представлений об образовании семени из частиц, отделяемых всеми органами тела и повторяющих в миниатюре их форму и строение. Это была в сущности первая теория наследственности, проявившая необычайную живучесть вплоть до XIX века, когда ее возродил Ч. Дарвин в своей гипотезе пангенезиса…» Боролись две точки зрения. Первая, допускавшая существование женского семени и его участие в оплодотворении. И вторая, одним из ярких представителей которой был Аристотель. Он считал, что форма будущего зародыша определяется только мужским семенем. Эпигенетическая теория развития Аристотеля и теории пангенезиса и преформации претерпели многовековую борьбу.
«Возрожденная в XVII веке У. Гарвеем, — пишет А.Е. Гайсинович, — она тем не менее была отклонена большинством биологов на основе наблюдений микроскопистов XVII–XVIII веков. Лишь во второй половине XVIII века было поколеблено учение о преформации и были сделаны новые попытки сформулировать эпигенетические теории развития и наследственности, основанные на признании существования мужского и женского семени и принципа пангенезиса (П. Мопертюи, Ж. Бюффон). Хотя К.Ф. Вольфу удалось заложить первые основы эмбриологии, однако познание сущности процессов оплодотворения осталось скрытым от него, и его представления о явлениях изменчивости и наследственности были преждевременными и ошибочными. Большим шагом вперед в изучении явлений наследственности было использование растений для экспериментов по их гибридизации. Опыты гибридизаторов XVIII века окончательно подтвердили смутно предполагавшееся еще в древности наличие двух полов у растений и одинаковое их участие в явлениях наследственности (И. Кельрейтер и многие другие). Однако учение о неизменности видов и мнимое его подтверждение при межвидовой гибридизации не позволили им достоверно доказать независимую передачу по наследству отдельных видовых и индивидуальных признаков».
Это стало огромной заслугой монаха-ученого Грегора Менделя, по праву считающегося основоположником науки о наследственности.
Грегор Иоганн Мендель (1822–1884) родился в Гейзендорфе, что в Силезии, в семье крестьянина. В начальной школе он обнаружил выдающиеся математические способности и по настоянию учителей продолжил образование в гимназии небольшого, находящегося поблизости городка Опава. Однако на дальнейшее обучение Менделя денег в семье недоставало. С большим трудом их удалось наскрести на завершение гимназического курса. Выручила младшая сестра Тереза: она пожертвовала скопленным для нее приданым. На эти средства Мендель смог проучиться еще некоторое время на курсах по подготовке в университет. После этого средства семьи иссякли окончательно.
Выход предложил профессор математики Франц. Он посоветовал Менделю вступить в августинский монастырь города Брно. Его возглавлял в то время аббат Кирилл Напп — человек широких взглядов, поощрявший занятия наукой. В 1843 году Мендель поступил в этот монастырь и получил имя Грегор (при рождении ему было дано имя Иоганн). Через четыре года монастырь направил двадцатипятилетнего монаха Менделя учителем в среднюю школу. Затем с 1851 по 1853 года он изучал естественные науки, особенно физику, в Венском университете, после чего стал преподавателем физики и естествознания в реальном училище города Брно.
Его педагогическую деятельность, продолжавшуюся четырнадцать лет, высоко ценили и руководство училища, и ученики. По воспоминаниям последних, Мендель был одним из любимейших учителей. Последние пятнадцать лет жизни Мендель был настоятелем монастыря.
С юности Грегор интересовался естествознанием. Будучи скорее любителем, чем профессиональным ученым-биологом, Мендель постоянно экспериментировал с различными растениями и пчелами. В 1856 году он начал классическую работу по гибридизации и анализу наследования признаков у гороха.
Мендель трудился в крохотном, менее двух с половиною соток гектара, монастырском садике. Он высевал горох на протяжении восьми лет, манипулируя двумя десятками разновидностей этого растения, различных по окраске цветков и по виду семян. Он проделал десять тысяч опытов.
Изучая форму семян у растений, полученных в результате скрещиваний, он ради уяснения закономерностей передачи лишь одного признака («гладкие — морщинистые») подверг анализу 7324 горошины. Каждое семя он рассматривал в лупу, сравнивая их форму и делая записи.
Мендель так сформулировал цель этой серии опытов: «Задачей опыта и было наблюдать эти изменения для каждой пары различающихся признаков и установить закон, по которому они переходят в следующих друг за другом поколениях. Поэтому опыт распадается на ряд отдельных экспериментов по числу наблюдаемых у опытных растений константно-различающихся признаков».
С опытов Менделя начался другой отсчет времени, главной отличительной чертой которого стал опять же введенный Менделем гибридологический анализ наследственности отдельных признаков родителей в потомстве Трудно сказать, что именно заставило естествоиспытателя обратиться к абстрактному мышлению, отвлечься от голых цифр и многочисленных экспериментов. Но именно оно позволило скромному преподавателю монастырской школы увидеть целостную картину исследования; увидеть ее лишь после того, как пришлось пренебречь десятыми и сотыми долями, обусловленными неизбежными статистическими вариациями. Только тогда буквенно «помеченные» исследователем альтернативные признаки открыли ему нечто сенсационное: определенные типы скрещивания в разном потомстве дают соотношение 3:1, 1:1, или 1:2:1.
Мендель обратился к работам своих предшественников за подтверждением мелькнувшей у него догадки. Те, кого исследователь почитал за авторитеты, пришли в разное время, и каждый по-своему, к общему заключению: гены могут обладать доминирующими (подавляющими) или рецессивными (подавляемыми) свойствами. А раз так, делает вывод Мендель, то комбинация неоднородных генов и дает то самое расщепление признаков, которое наблюдается в его собственных опытах. И в тех самых соотношениях, что были вычислены с помощью его статистического анализа. «Проверяя алгеброй гармонию» происходящих изменений в полученных поколениях гороха, ученый вводит буквенные обозначения. Он отмечает заглавной буквой доминантное, а строчной — рецессивное состояние одного и того же гена.
Перемножив комбинационные ряды. (А+2Аа+а)х(В-2ВЬ+Ь), Мендель находит все возможные типы сочетания.
«Ряд состоит, следовательно, из 9 членов, из которых 4 представлены в нем по одному разу каждый и константны в обоих признаках; формы АВ, ab схожи с исходными видами, обе другие представляют единственные, кроме них, возможные константные комбинации между соединившимися признаками А, а, В, Ь. Четыре члена встречаются по два раза каждый и в одном признаке константны, в другом — гибридны. Один член встречается 4 раза и является гибридным в обоих признаках… Этот ряд представляет собой бесспорно комбинационный ряд, в котором связаны почленно оба ряда развития для признаков А и а, В и Ь».
В результате Мендель приходит к следующим выводам: «Потомки гибридов, соединяющих в себе несколько существенно различных признаков, представляют собой членов комбинационного ряда, в котором соединены ряды развития каждой пары различающихся признаков. Этим одновременно доказывается, что поведение в гибридном соединении каждой пары различающихся признаков независимо от других различий у обоих исходных растений», и поэтому «константные признаки, которые встречаются у различных форм родственной растительной группы, могут вступить во все соединения, которые возможны по правилам комбинаций».
Обобщенно результаты работы ученого выглядят так:
1) все гибридные растения первого поколения одинаковы и проявляют признак одного из родителей;
2) среди гибридов второго поколения появляются растения как с доминантными, так и с рецессивными признаками в соотношении 3: 1;
3) два признака в потомстве ведут себя независимо и во втором поколении.
4) необходимо различать признаки и их наследственные задатки (растения, проявляющие доминантные признаки, могут в скрытом виде нести задатки рецессивных);
5) объединение мужских и женских гамет случайно в отношении того, задатки каких признаков несут эти гаметы.
В феврале и марте 1865 года в двух докладах на заседаниях провинциального научного кружка, носившего название Общества естествоиспытателей города Брно, один из рядовых его членов — Грегор Мендель — сообщил о результатах своих многолетних исследований, завершенных в 1863 году.
1 2 3 4 5 6 7 8 9 10 11 12 13 14 15 16 17 18 19 20 21 22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47 48 49 50 51 52 53 54 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 75 76 77 78 79 80 81


А-П

П-Я